Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
Clin Chim Acta ; 558: 119668, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38599540

ABSTRACT

BACKGROUND: This study aimed to evaluate the diagnostic and prognostic potential of MAp19, a regulating component of the lectin pathway of the complement system, in patients with suspected functionally relevant coronary artery disease (fCAD) as well as the determinants of MAp19 levels. METHODS: The presence of fCAD was adjudicated using myocardial perfusion imaging with single-photon emission tomography and, where available, coronary angiography. MAp19 levels were measured in participants at rest, at peak stress tests, and two hours after the stress. The study also tracked major cardiovascular events, including non-fatal myocardial infarction and cardiovascular death, over a five-year follow-up period. RESULTS: Among the 1,571 patients analyzed (32.3 % women), fCAD was identified in 462 individuals (29.4 %). MAp19 demonstrated no diagnostic significance, yielding an area under the curve (AUC) of 0.51 (0.47-0.55). Throughout the five-year follow-up, 107 patients (6.8 %) experienced non-fatal myocardial infarctions, 99 (6.3 %) had cardiovascular death, 194 (12.3 %) experienced all cause death and 50 (3.1 %) suffered a stroke. Cox and Kaplan-Meier analysis confirmed prognostic value of MAp19 for myocardial infarction, but not for cardiovascular death. Significant increases in the concentration of MAp19 were observed during bicycle (p = 0.001) and combined stress tests (p = 0.001). CONCLUSION: MAp19 demonstrated an association with the risk of myocardial infarction. Increases in MAp19 concentration were observed during bicycle and combined stress-tests.


Subject(s)
Coronary Artery Disease , Humans , Female , Male , Coronary Artery Disease/diagnosis , Coronary Artery Disease/blood , Middle Aged , Prognosis , Aged , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Mannose-Binding Protein-Associated Serine Proteases/analysis
2.
J Immunol ; 212(7): 1172-1177, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38372634

ABSTRACT

The activation of the CP/LP C3 proconvertase complex is a key event in complement activation and involves cleavage of C4 and C2 by the C1s protease (classical pathway) or the mannose-binding lectin-associated serine protease (MASP)-2 (lectin pathway). Efficient cleavage of C4 by C1s and MASP-2 involves exosites on the complement control protein and serine protease (SP) domains of the proteases. The complement control protein domain exosite is not involved in cleavage of C2 by the proteases, but the role of an anion-binding exosite (ABE) on the SP domains of the proteases has (to our knowledge) never been investigated. In this study, we have shown that the ABE on the SP of both C1s and MASP-2 is crucial for efficient cleavage of C2, with mutant forms of the proteases greatly impaired in their rate of cleavage of C2. We have additionally shown that the site of binding for the ABE of the proteases is very likely to be located on the von Willebrand factor domain of C2, with the precise area differing between the enzymes: whereas C1s requires two anionic clusters on the von Willebrand factor domain to enact efficient cleavage of C2, MASP-2 apparently only requires one. These data provide (to our knowledge) new information about the molecular determinants for efficient activation of C2 by C1s and MASP-2. The enhanced view of the molecular events underlying the early stages of complement activation provides further possible intervention points for control of this activation that is involved in a number of inflammatory diseases.


Subject(s)
Complement Activation , Mannose-Binding Lectin , Mannose-Binding Protein-Associated Serine Proteases , Complement C1s , Complement C4/metabolism , Mannose-Binding Lectin/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Protein Domains , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , von Willebrand Factor , Humans , HEK293 Cells
3.
J Infect Dis ; 229(3): 680-690, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-37878754

ABSTRACT

Most patients with COVID-19 in the intensive care unit develop an acute respiratory distress syndrome characterized by severe hypoxemia, decreased lung compliance, and high vascular permeability. Activation of the complement system is a hallmark of moderate and severe COVID-19, with abundant deposition of complement proteins in inflamed tissue and on the endothelium during COVID-19. Using a transgenic mouse model of SARS-CoV-2 infection, we assessed the therapeutic utility of an inhibitory antibody (HG4) targeting MASP-2, a key enzyme in the lectin pathway. Treatment of infected mice with HG4 reduced the disease severity score and improved survival vs mice that received an isotype control antibody. Administration of HG4 significantly reduced the lung injury score, including alveolar inflammatory cell infiltration, alveolar edema, and alveolar hemorrhage. The ameliorating effect of MASP-2 inhibition on the severity of COVID-19 pathology is reflected by a significant reduction in the proinflammatory activation of brain microglia in HG4-treated mice.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Animals , Mice , Mannose-Binding Protein-Associated Serine Proteases/metabolism , SARS-CoV-2/metabolism , Complement Activation , Disease Models, Animal , Complement System Proteins
4.
Clin Exp Immunol ; 215(1): 58-64, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37832142

ABSTRACT

Activation of the lectin pathway of the complement system, as demonstrated by elevated levels of mannan-binding lectin proteins (MBL), contributes to vascular pathology in type 1 diabetes (T1D). Vascular complications are greatest in T1D individuals with concomitant insulin resistance (IR), however, whether IR amplifies activiation of the lectin pathway in T1D is unknown. We pooled pretreatment data from two RCTs and performed a cross-sectional analysis on 46 T1D individuals. We employed estimated glucose disposal rate (eGDR), a validated IR surrogate with cut-points of: <5.1, 5.1-8.7, and > 8.7 mg/kg/min to determine IR status, with lower eGDR values conferring higher degrees of IR. Plasma levels of MBL-associated proteases (MASP-1, MASP-2, and MASP-3) and their regulatory protein MAp44 were compared among eGDR classifications. In a subset of 14 individuals, we assessed change in MASPs and MAp44 following improvement in IR. We found that MASP-1, MASP-2, MASP-3, and MAp44 levels increased in a stepwise fashion across eGDR thresholds with elevated MASPs and MAp44 levels conferring greater degrees of IR. In a subset of 14 patients, improvement in IR was associated with significant reductions in MASPs, but not MAp44, levels. In conclusion, IR in T1D amplifies levels of MASP-1/2/3 and their regulator MAp44, and improvement of IR normalizes MASP-1/2/3 levels. Given that elevated levels of these proteins contribute to vascular pathology, amplification of the lectin pathway of the complement system may offer mechanistic insight into the relationship between IR and vascular complications in T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin Resistance , Mannose-Binding Lectin , Humans , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Cross-Sectional Studies , Lectins/metabolism , Complement System Proteins
5.
Front Immunol ; 14: 1297352, 2023.
Article in English | MEDLINE | ID: mdl-38022610

ABSTRACT

Introduction: Overactivation of the lectin pathway of complement plays a pathogenic role in a broad range of immune-mediated and inflammatory disorders; mannan-binding lectin-associated serine protease-2 (MASP-2) is the key effector enzyme of the lectin pathway. We developed a fully human monoclonal antibody, narsoplimab, to bind to MASP-2 and specifically inhibit lectin pathway activation. Herein, we describe the preclinical characterization of narsoplimab that supports its evaluation in clinical trials. Methods and results: ELISA binding studies demonstrated that narsoplimab interacted with both zymogen and enzymatically active forms of human MASP-2 with high affinity (KD 0.062 and 0.089 nM, respectively) and a selectivity ratio of >5,000-fold relative to closely related serine proteases C1r, C1s, MASP-1, and MASP-3. Interaction studies using surface plasmon resonance and ELISA demonstrated approximately 100-fold greater binding affinity for intact narsoplimab compared to a monovalent antigen binding fragment, suggesting an important contribution of functional bivalency to high-affinity binding. In functional assays conducted in dilute serum under pathway-specific assay conditions, narsoplimab selectively inhibited lectin pathway-dependent activation of C5b-9 with high potency (IC50 ~ 1 nM) but had no observable effect on classical pathway or alternative pathway activity at concentrations up to 500 nM. In functional assays conducted in 90% serum, narsoplimab inhibited lectin pathway activation in human serum with high potency (IC50 ~ 3.4 nM) whereas its potency in cynomolgus monkey serum was approximately 10-fold lower (IC50 ~ 33 nM). Following single dose intravenous administration to cynomolgus monkeys, narsoplimab exposure increased in an approximately dose-proportional manner. Clear dose-dependent pharmacodynamic responses were observed at doses >1.5 mg/kg, as evidenced by a reduction in lectin pathway activity assessed ex vivo that increased in magnitude and duration with increasing dose. Analysis of pharmacokinetic and pharmacodynamic data revealed a well-defined concentration-effect relationship with an ex vivo EC50 value of approximately 6.1 µg/mL, which was comparable to the in vitro functional potency (IC50 33 nM; ~ 5 µg/mL). Discussion: Based on these results, narsoplimab has been evaluated in clinical trials for the treatment of conditions associated with inappropriate lectin pathway activation, such as hematopoietic stem cell transplantation-associated thrombotic microangiopathy.


Subject(s)
Lectins , Mannose-Binding Protein-Associated Serine Proteases , Animals , Humans , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Lectins/metabolism , Macaca fascicularis , Serine Endopeptidases/metabolism
6.
FASEB J ; 37(11): e23256, 2023 11.
Article in English | MEDLINE | ID: mdl-37823685

ABSTRACT

The complement system is a complex, tightly regulated protein cascade involved in pathogen defense and the pathogenesis of several diseases. Thus, the development of complement modulators has risen as a potential treatment for complement-driven inflammatory pathologies. The enzymatically inactive MAP-2 has been reported to inhibit the lectin pathway by competing with its homologous serine protease MASP-2. The membrane-bound complement inhibitor CD55 acts on the C3/C5 convertase level. Here, we fused MAP-2 to the four N-terminal domains of CD55 generating a targeted chimeric inhibitor to modulate complement activation at two different levels of the complement cascade. Its biological properties were compared in vitro with the parent molecules. While MAP-2 and CD55 alone showed a minor inhibition of the three complement pathways when co-incubated with serum (IC50MAP-2+CD55 1-4 = 60.98, 36.10, and 97.01 nM on the classical, lectin, and alternative pathways, respectively), MAP-2:CD551-4 demonstrated a potent inhibitory activity (IC50MAP-2:CD55 1-4 = 2.94, 1.76, and 12.86 nM, respectively). This inhibitory activity was substantially enhanced when pre-complexes were formed with the lectin pathway recognition molecule mannose-binding lectin (IC50MAP-2:CD55 1-4 = 0.14 nM). MAP-2:CD551-4 was also effective at protecting sensitized sheep erythrocytes in a classical hemolytic assay (CH50 = 13.35 nM). Finally, the chimeric inhibitor reduced neutrophil activation in full blood after stimulation with Aspergillus fumigatus conidia, as well as phagocytosis of conidia by isolated activated neutrophils. Our results demonstrate that MAP-2:CD551-4 is a potent complement inhibitor reinforcing the idea that engineered fusion proteins are a promising design strategy for identifying and developing drug candidates to treat complement-mediated diseases.


Subject(s)
Complement Activation , Complement System Proteins , Animals , Sheep , CD55 Antigens/pharmacology , Lectins/metabolism , Transcription Factors , Complement Inactivating Agents , Mannose-Binding Protein-Associated Serine Proteases/metabolism
7.
Clin Exp Immunol ; 214(1): 18-25, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37407023

ABSTRACT

Complement activation is a hallmark of systemic lupus erythematosus (SLE) and can proceed through the classical (CP), lectin (LP), or alternative pathway (AP). When managing SLE patients, pathway-specific complement activation is rarely monitored as clinical assays are unavailable. In this study, we aim to differentiate between CP- or LP-mediated complement activation in SLE patients by quantifying pathway-specific protein complexes, namely C1s/C1-inhibitor (C1-INH) (CP-specific activation) and MASP-1/C1-INH (LP-specific activation). Levels for both complexes were assessed in 156 SLE patients and 50 controls using two newly developed ELISAs. We investigated whether pathway-specific complement activation was associated with disease activity and lupus nephritis (LN). Disease activity stratification was performed using SLEDAI scores assessed at inclusion. C1s/C1-INH concentrations were significantly increased in active SLE patients (SLEDAI ≥6) when compared with SLE patients with low disease activity (SLEDAI <6, P < 0.01) and correlated with SLEDAI score (r = .29, P < 0.01). In active LN, MASP-1/C1-INH plasma concentrations were significantly increased compared with nonactive LN (P = 0.02). No differences in MASP-1/C1-INH plasma concentrations were observed between active SLE patients and patients with low disease activity (P = 0.11) nor did we observe a significant correlation with disease activity (r = 0.12, P = 0.15). Our data suggest that the CP and the LP are activated in SLE. The CP is activated in active SLE disease, whereas activation of the LP might be more specific to disease manifestations like LN. Our results warrant further research into specific complement pathway activation in SLE patients to potentially improve specific-targeted and tailored-treatment approaches.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Complement Pathway, Classical , Lectins , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Complement Activation , Lupus Nephritis/diagnosis
8.
Int J Cardiol ; 389: 131193, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37473815

ABSTRACT

BACKGROUND: The lectin pathway has been demonstrated to play a critical role in the pathological process of myocardial ischemia/reperfusion injury (IRI). Mannose-binding lectin (MBL)-associated serine protease-1 (MASP-1), especially different from other components of the lectin pathway, mediates proinflammatory and procoagulant reactions independent of complement cascades. However, the role of MASP-1 in myocardial IRI remains unknown so far. METHODS: Myocardial IRI was established with 45 min ischemia and 24 h reperfusion in mice. C1 inhibitor, as the natural inhibitor of MASP-1, was administrated at 20 IU/Kg via tail vein 5 min before surgical operation. Cardiac function and myocardial infarct size were assessed. Myocardial histology and fibrosis were evaluated by H&E and Masson staining, respectively. Deposition of MASP-1, expression of PAR-1/4 and neutrophil extracellular traps (NET) were investigated on myocardium tissue by IHC staining. Cell apoptosis was detected by TUNEL assay. Levels of myocardial enzymes and proinflammatory cytokines were determined by ELISA. RESULTS: Inhibition of MASP-1 with C1 INH improved cardiac function and alleviated myocardium tissue injury (infarct size, enzymes, histology and fibrosis) after myocardial IRI. Deposition of MASP-1 and expression PAR-1, as well as NET formation in myocardial tissue were suppressed by MASP-1 inhibitor, while PAR-4 was elevated. Levels of apoptosis, HMGB-1 and IL-6 were lower after blocking MASP-1. Yet, IL-8 and TNF-α remained unchanged. CONCLUSIONS: MASP-1, as a new contributor, played a critical role in myocardial IRI. Inhibition of MASP-1 protected myocardial tissue from IRI probably via regulation of PARs/NET pathway. This may provide a novel target strategy against myocardial IRI.


Subject(s)
Myocardial Reperfusion Injury , Mice , Animals , Complement Pathway, Mannose-Binding Lectin/physiology , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Lectins/metabolism , Mannose-Binding Lectins
9.
Front Immunol ; 14: 1197023, 2023.
Article in English | MEDLINE | ID: mdl-37283768

ABSTRACT

Complement factor D (FD) is a serine protease present predominantly in the active form in circulation. It is synthesized as a zymogen (pro-FD), but it is continuously converted to FD by circulating active MASP-3. FD is a unique, self-inhibited protease. It has an extremely low activity toward free factor B (FB), while it is a highly efficient enzyme toward FB complexed with C3b (C3bB). The structural basis of this phenomenon is known; however, the rate enhancement was not yet quantified. It has also been unknown whether pro-FD has any enzymatic activity. In this study, we aimed to measure the activity of human FD and pro-FD toward uncomplexed FB and C3bB in order to quantitatively characterize the substrate-induced activity enhancement and zymogenicity of FD. Pro-FD was stabilized in the proenzyme form by replacing Arg25 (precursor numbering) with Gln (pro-FD-R/Q). Activated MASP-1 and MASP-3 catalytic fragments were also included in the study for comparison. We found that the complex formation with C3b enhanced the cleavage rate of FB by FD approximately 20 million-fold. C3bB was also a better substrate for MASP-1, approximately 100-fold, than free FB, showing that binding to C3b renders the scissile Arg-Lys bond in FB to become more accessible for proteolysis. Though easily measurable, this cleavage by MASP-1 is not relevant physiologically. Our approach provides quantitative data for the two-step mechanism characterized by the enhanced susceptibility of FB for cleavage upon complex formation with C3b and the substrate-induced activity enhancement of FD upon its binding to C3bB. Earlier MASP-3 was also implicated as a potential FB activator; however, MASP-3 does not cleave C3bB (or FB) at an appreciable rate. Finally, pro-FD cleaves C3bB at a rate that could be physiologically significant. The zymogenicity of FD is approximately 800, i.e., the cleavage rate of C3bB by pro-FD-R/Q was found to be approximately 800-fold lower than that by FD. Moreover, pro-FD-R/Q at approximately 50-fold of the physiological FD concentration could restore half-maximal AP activity of FD-depleted human serum on zymosan. The observed zymogen activity of pro-FD might be relevant in MASP-3 deficiency cases or during therapeutic MASP-3 inhibition.


Subject(s)
Complement Factor D , Mannose-Binding Protein-Associated Serine Proteases , Humans , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Complement Factor B , Serine Endopeptidases/metabolism , Enzyme Precursors
10.
Mol Genet Genomics ; 298(4): 955-963, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37204457

ABSTRACT

The study aimed to measure plasma levels of Mannose-Binding Lectin (MBL) and MBL-associated serine protease-2 (MASP-2) and their polymorphisms in COVID-19 patients and controls to detect association. As MBL is a protein of immunological importance, it may contribute to the first-line host defence against SARS-CoV-2. MBL initiates the lectin pathway of complement activation with help of MASP-1 and MASP-2. Hence, appropriate serum levels of MBL and MASPs are crucial in getting protection from the disease. The polymorphisms of MBL and MASP genes affect their plasma levels, impacting their protective function and thus may manifest susceptibility, extreme variability in the clinical symptoms and progression of COVID-19 disease. The present study was conducted to find plasma levels and genetic variations in MBL and MASP-2 in COVID-19 patients and controls using PCR-RFLP and ELISA, respectively.The present study was conducted to find plasma levels and genetic variations in MBL and MASP-2 in COVID-19 patients and controls using PCR-RFLP and ELISA, respectively. Our results indicate that median serum levels of MBL and MASP-2 were significantly low in diseased cases but attained normal levels on recovery. Only genotype DD was found to be associated with COVID-19 cases in the urban population of Patna city.


Subject(s)
COVID-19 , Mannose-Binding Protein-Associated Serine Proteases , Humans , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Urban Population , COVID-19/epidemiology , COVID-19/genetics , SARS-CoV-2/genetics , Genotype
11.
Immunobiology ; 228(2): 152349, 2023 03.
Article in English | MEDLINE | ID: mdl-36805857

ABSTRACT

The abnormal neurodevelopment secondary to in utero adversities, such as hypoxia, malnutrition and maternal infections, underlies schizophrenia (SZ) etiology. As the genes of MBL-associated serine proteases (MASP) of the complement lectin pathway, MASP1 and MASP2, are expressed in the developing cortex and are functionally important for neuronal migration, we hypothesize that the malfunction ofl-ficolin-MASP arm may also be involved in schizophrenia pathophysiology as it was shown for MBL-MASP complexes. We investigated serum l-ficolin and plasma MASP-2 levels, the activity of l-ficolin-bound MASP-2, as well as an array of the complement-related variables in chronic schizophrenic patients in the acute phase of the disease and controls without physical or mental diagnoses. The median concentration of l-ficolin in Armenian controls was 3.66 µg/ml and similar to those reported for other Caucasian populations. SZ-cases had âˆ¼40 % increase in serum l-ficolin (median 5.08 µg/ml; P < 0.0024). In the pooled sample, l-ficolin level was higher in males than in females (P < 0.0031), but this gender dichotomy was not affecting the variable association with schizophrenia (P < 0.016). Remarkably, MASP-2 plasma concentration showed gender-dependent significant variability in the group of patients but not in controls. When adjusted for gender and gender*diagnosis interaction, a significantly high MASP-2 level in female patients versus female controls was observed (median: 362 ng/ml versus 260 ng/ml, respectively; P < 0.0020). A significant increase in l-ficolin-bound MASP-2 activity was also observed in schizophrenia (on the median, cases vs controls: 7.60 vs 6.50 RU; P < 0.021). Correlation analyses of the levels of l-ficolin and MASP-2, l-ficolin-(MASP-2) activity and the demographic data did not show any significant association with the age of individuals, family history, age at onset and duration of the illness, and smoking. Noteworthy, the levels of l-ficolin and MASP-2 in circulation were significantly associated with the type of schizophrenia (paranoid SZ-cases had much higher l-ficolin (P < 0.0035) and lower MASP-2 levels than the other types combined (P < 0.049)). Correlations were also found between: (i) the classical pathway functional activity and l-ficolin level (rs = 0.19, P < 0.010); (ii) the alternative pathway functional activity and MASP-2 level (rs = 0.26, P < 0.00035); (iii) the activity of l-ficolin-bound MASP2 and the downstream C2 component haemolytic activity (rs = -0.19, P < 0.017); and (iv) l-ficolin and the upstream C-reactive protein (CRP) serum concentrations (r = 0.28, P < 0.018). Overall, the results showed l-ficolin-related lectin pathway alterations in schizophrenia pathophysiology. It is likely that in addition to the MBL-MASP component over-activity reported previously, the alterations of the lectin pathway in schizophrenia also involve variations of l-ficolin-(MASP-2) on protein concentration and activity levels.


Subject(s)
Mannose-Binding Lectin , Schizophrenia , Male , Humans , Female , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Lectins , Complement Pathway, Mannose-Binding Lectin , Complement System Proteins , Mannose-Binding Lectin/genetics , Ficolins
12.
Scand J Immunol ; 97(3): e13249, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36574978

ABSTRACT

Herewith, we provide novel original data about the prevalence of FCN3 rs532781899 and MASP2 rs72550870 variants among the newborns of aboriginal Siberian Arctic populations (Nenets and Dolgan-Nganasans) and Russians of East Siberia. This novel data has been analysed along with the genetic data about other proteins of the lectin pathway of the complement system (mannose-binding lectin and ficolin-2) obtained earlier. A total of 926 specimens of dried blood spots of the newborns were genotyped. The newborns represented four populations: Nenets, Dolgan-Nganasans, Mixed aboriginal population, and Russians (Caucasians) to study the prevalence of single nucleotide polymorphisms of FCN3 rs532781899 and MASP2 rs72550870. The prevalence of the deletion allele of the rs532781899 variant in the FCN3 gene associated with the decreased production of ficolin-3 was found to be increased in Russians compared to the Nenets aboriginal populations (P = .002). The prevalence of the rs72550870*G allele in the MASP2 gene associated with low serum protease activity was found to be increased in Russians compared with Nenets and Dolgan-Nganasans (P < .001 and P = .03, respectively). The results of the current study and our previous findings corroborate with a hypothesis that human evolution has been directed toward the accumulation of genotypes associated with low activity of the lectin complement activation pathway.


Subject(s)
Complement Pathway, Mannose-Binding Lectin , Lectins , Mannose-Binding Protein-Associated Serine Proteases , Humans , Infant, Newborn , Genotype , Lectins/genetics , Mannose-Binding Lectin , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Ficolins
13.
Immunol Rev ; 313(1): 15-24, 2023 01.
Article in English | MEDLINE | ID: mdl-36316810

ABSTRACT

Complement factor D (FD) is a serine protease that plays an essential role in the activation of the alternative pathway (AP) by cleaving complement factor B (FB) and generating the C3 convertases C3(H2 O)Bb and C3bBb. FD is produced mainly from adipose tissue and circulates in an activated form. On the contrary, the other serine proteases of the complement system are mainly synthesized in the liver. The activation mechanism of FD has long been unknown. Recently, a serendipitous discovery in the mechanism of FD activation has been provided by a generation of Masp1 gene knockout mice lacking both the serine protease MASP-1 and its alternative splicing variant MASP-3, designated MASP-1/3-deficient mice. Sera from the MASP-1/3-deficient mice had little-to-no lectin pathway (LP) and AP activity with circulating zymogen or proenzyme FD (pro-FD). Sera from patients with 3MC syndrome carrying mutations in the MASP1 gene also had circulating pro-FD, suggesting that MASP-1 and/or MASP-3 are involved in activation of FD. Here, we summarize the current knowledge of the mechanism of FD activation that was finally elucidated using the sera of mice monospecifically deficient for MASP-1 or MASP-3. Sera of the MASP-1-deficient mice lacked LP activity, but those of the MASP-3-deficient mice lacked AP activity with pro-FD. This review illustrates the pivotal role of MASP-3 in the physiological activation of the AP via activation of FD.


Subject(s)
Complement Factor D , Complement Pathway, Alternative , Humans , Animals , Mice , Complement Factor D/genetics , Complement Factor D/metabolism , Complement Pathway, Alternative/physiology , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Complement System Proteins , Mice, Knockout
14.
Hepatology ; 77(4): 1181-1197, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35849032

ABSTRACT

BACKGROUND AND AIMS: Liver fibrosis is a chronic disease characterized by different etiological agents; dysregulated interactions between hepatocytes and HSCs contribute to this disease. ß-arrestin 1 (ARRB1) plays an important role in liver fibrosis; however, the effect of ARRB1 on the crosstalk between hepatocytes and HSCs in liver fibrosis is unknown. The aim of this study is to investigate how ARRB1 modulates hepatocyte and HSC activation during liver fibrosis. APPROACH AND RESULTS: Normal and fibrotic human liver and serum samples were obtained. CCl 4 -induced liver fibrosis and methionine-choline deficiency-induced NASH models were constructed. Primary hepatocytes and HSCs were isolated, and human hepatic LO2 and stellate LX2 cells were used. Small extracellular vesicles (EVs) were purified, and key proteins were identified. ARRB1 was up-regulated in hepatocytes and associated with autophagic blockage in liver fibrosis. ARRB1 increased the release of hepatocyte-derived small EVs by inhibiting multivesicular body lysosomal degradation and activating Rab27A, thereby activating HSCs. Proteomic analyses showed that mannan-binding lectin serine protease 1 (MASP1) was enriched in hepatocyte-derived small EVs and activated HSCs via p38 mitogen-activated protein kinase (MAPK)/activating transcription factor 2 (ATF2) signaling. ARRB1 up-regulated MASP1 expression in hepatocytes. MASP1 promoted liver fibrosis in mice. Clinically, MASP1 expression was increased in the serum and liver tissue of patients with liver fibrosis. CONCLUSIONS: ARRB1 up-regulates the release of hepatocyte-derived MASP1-enriched small EVs by regulating the autophagic-lysosomal/multivesicular body pathway and Rab27A. Hepatocyte-derived MASP1 activates HSCs to promote liver fibrogenesis through p38 MAPK/ATF2 signaling. Thus, MASP1 is a pivotal therapeutic target in liver fibrosis.


Subject(s)
Extracellular Vesicles , Hepatic Stellate Cells , Humans , Mice , Animals , Hepatic Stellate Cells/metabolism , Proteomics , Hepatocytes/metabolism , Liver Cirrhosis/metabolism , Liver/pathology , Extracellular Vesicles/metabolism , Mannose-Binding Protein-Associated Serine Proteases/adverse effects , Mannose-Binding Protein-Associated Serine Proteases/metabolism
15.
J Cell Biol ; 222(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36378161

ABSTRACT

TJs maintain the epithelial barrier by regulating paracellular permeability. Since TJs are under dynamically fluctuating intercellular tension, cells must continuously survey and repair any damage. However, the underlying mechanisms allowing cells to sense TJ damage and repair the barrier are not yet fully understood. Here, we showed that proteinases play an important role in the maintenance of the epithelial barrier. At TJ break sites, EpCAM-claudin-7 complexes on the basolateral membrane become accessible to apical membrane-anchored serine proteinases (MASPs) and the MASPs cleave EpCAM. Biochemical data and imaging analysis suggest that claudin-7 released from EpCAM contributes to the rapid repair of damaged TJs. Knockout (KO) of MASPs drastically reduced barrier function and live-imaging of TJ permeability showed that MASPs-KO cells exhibited increased size, duration, and frequency of leaks. Together, our results reveal a novel mechanism of TJ maintenance through the localized proteolysis of EpCAM at TJ leaks, and provide a better understanding of the dynamic regulation of epithelial permeability.


Subject(s)
Claudins , Epithelial Cell Adhesion Molecule , Mannose-Binding Protein-Associated Serine Proteases , Tight Junctions , Claudins/genetics , Claudins/metabolism , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Proteolysis , Tight Junctions/metabolism , Gene Knockout Techniques
16.
PLoS Genet ; 18(12): e1010537, 2022 12.
Article in English | MEDLINE | ID: mdl-36508456

ABSTRACT

The evolutionary diversification of orb-web weaving spiders is closely tied to the mechanical performance of dragline silk. This proteinaceous fiber provides the primary structural framework of orb web architecture, and its extraordinary toughness allows these structures to absorb the high energy of aerial prey impact. The dominant model of dragline silk molecular structure involves the combined function of two highly repetitive, spider-specific, silk genes (spidroins)-MaSp1 and MaSp2. Recent genomic studies, however, have suggested this framework is overly simplistic, and our understanding of how MaSp genes evolve is limited. Here we present a comprehensive analysis of MaSp structural and evolutionary diversity across species of Argiope (garden spiders). This genomic analysis reveals the largest catalog of MaSp genes found in any spider, driven largely by an expansion of MaSp2 genes. The rapid diversification of Argiope MaSp genes, located primarily in a single genomic cluster, is associated with profound changes in silk gene structure. MaSp2 genes, in particular, have evolved complex hierarchically organized repeat units (ensemble repeats) delineated by novel introns that exhibit remarkable evolutionary dynamics. These repetitive introns have arisen independently within the genus, are highly homogenized within a gene, but diverge rapidly between genes. In some cases, these iterated introns are organized in an alternating structure in which every other intron is nearly identical in sequence. We hypothesize that this intron structure has evolved to facilitate homogenization of the coding sequence. We also find evidence of intergenic gene conversion and identify a more diverse array of stereotypical amino acid repeats than previously recognized. Overall, the extreme diversification found among MaSp genes requires changes in the structure-function model of dragline silk performance that focuses on the differential use and interaction among various MaSp paralogs as well as the impact of ensemble repeat structure and different amino acid motifs on mechanical behavior.


Subject(s)
Fibroins , Spiders , Animals , Silk/genetics , Spiders/genetics , Spiders/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Gardens , Fibroins/genetics , Fibroins/chemistry , Fibroins/metabolism
17.
Cell Mol Biol Lett ; 27(1): 102, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36418956

ABSTRACT

The innate immune system is the body's first line of defense against pathogens and involves antibody and complement system-mediated antigen removal. Immune-response-related complement molecules have been identified in lamprey, and the occurrence of innate immune response via the mannose-binding lectin-associated serine proteases of the lectin cascade has been reported. We have previously shown that lamprey (Lampetra japonica) serum can efficiently and specifically eliminate foreign pathogens. Therefore, we aimed to understand the immune mechanism of lamprey serum in this study. We identified and purified a novel spherical lectin (LSSL) from lamprey serum. LSSL had two structural calcium ions coordinated with conserved amino acids, as determined through cryogenic electron microscopy. LSSL showed high binding capacity with microbial and mammalian glycans and demonstrated agglutination activity against bacteria. Phylogenetic analysis revealed that LSSL was transferred from phage transposons to the lamprey genome via horizontal gene transfer. Furthermore, LSSL was associated with mannose-binding lectin-associated serine protease 1 and promoted the deposition of the C3 fragment on the surface of target cells upon binding. These results led us to conclude that LSSL initiates and regulates agglutination, resulting in exogenous pathogen and tumor cell eradication. Our observations will give a greater understanding of the origin and evolution of the complement system in higher vertebrates and lead to the identification of novel immune molecules and pathways for defense against pathogens and tumor cells.


Subject(s)
Lampreys , Lectins , Animals , Lampreys/metabolism , Lectins/metabolism , Phylogeny , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Mannose-Binding Lectins , Mammals
18.
Front Immunol ; 13: 1039765, 2022.
Article in English | MEDLINE | ID: mdl-36420270

ABSTRACT

The most commonly used markers to assess complement activation are split products that are produced through activation of all three pathways and are located downstream of C3. In contrast, C4d derives from the cleavage of C4 and indicates either classical (CP) or lectin pathway (LP) activation. Although C4d is perfectly able to distinguish between CP/LP and alternative pathway (AP) activation, no well-established markers are available to differentiate between early CP and LP activation. Active enzymes of both pathways (C1s/C1r for the CP, MASP-1/MASP-2 for the LP) are regulated by C1 esterase inhibitor (C1-INH) through the formation of covalent complexes. Aim of this study was to develop validated immunoassays detecting C1s/C1-INH and MASP-1/C1-INH complex levels. Measurement of the complexes reveals information about the involvement of the respective pathways in complement-mediated diseases. Two sandwich ELISAs detecting C1s/C1-INH and MASP-1/C1-INH complex were developed and tested thoroughly, and it was investigated whether C1s/C1-INH and MASP-1/C1-INH complexes could serve as markers for either early CP or LP activation. In addition, a reference range for these complexes in healthy adults was defined, and the assays were clinically validated utilizing samples of 414 COVID-19 patients and 96 healthy controls. The immunoassays can reliably measure C1s/C1-INH and MASP-1/C1-INH complex concentrations in EDTA plasma from healthy and diseased individuals. Both complex levels are increased in serum when activated with zymosan, making them suitable markers for early classical and early lectin pathway activation. Furthermore, measurements of C1-INH complexes in 96 healthy adults showed normally distributed C1s/C1-INH complex levels with a physiological concentration of 1846 ± 1060 ng/mL (mean ± 2SD) and right-skewed distribution of MASP-1/C1-INH complex levels with a median concentration of 36.9 (13.18 - 87.89) ng/mL (2.5-97.5 percentile range), while levels of both complexes were increased in COVID-19 patients (p<0.0001). The newly developed assays measure C1-INH complex levels in an accurate way. C1s/C1-INH and MASP-1/C1-INH complexes are suitable markers to assess early classical and lectin pathway activation. An initial reference range was set and first studies showed that these markers have added value for investigating and unraveling complement activation in human disease.


Subject(s)
COVID-19 , Mannose-Binding Protein-Associated Serine Proteases , Adult , Humans , Complement C1 Inhibitor Protein , Complement System Proteins , COVID-19/diagnosis , Lectins , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Enzyme-Linked Immunosorbent Assay
19.
Eur Rev Med Pharmacol Sci ; 26(18): 6725-6741, 2022 09.
Article in English | MEDLINE | ID: mdl-36196721

ABSTRACT

OBJECTIVE: Stomach adenocarcinoma (STAD) is the major cancer worldwide with high morbidity and mortality rate. Late diagnosis and limited treatment options of STAD lead to disease progression, spread, and metastasis. Therefore, finding a new biomarker to diagnosis and treatment is very important for STAD in clinical practice. MATERIALS AND METHODS: The clinical data, transcriptome data and CCLE data were downloaded from TCGA database and CCLE database, respectively. TIMER website, TISIDB website and CIBERSORT methodology were used to analyse immune infiltration. R software and R package were used to analyse gene difference expression, determine co-expression genes, conduct gene enrichment analyses, construct a prognostic signature and establish nomogram. RESULTS: MASP1 was decreased in STAD compared with normal tissue at the mRNA level (p < 0.001). The enrichment analysis showed that mismatch repair (MMR) was related to the MASP1 gene. Up-regulation of MAPS1 expression was positively associated with dendritic cells (p < 0.01), neutrophils (p < 0.05), macrophages (p < 0.001), CD4+ T cells (p < 0.001) and B cells (p < 0.05). A four-gene prognostic signature was determined based on MASP1-related immunomodulators. The prognostic signature was an independent prognostic predictor in STAD. Finally, we established a nomogram to forecast survival and the nomogram has a good prediction accuracy. CONCLUSIONS: In STAD, MASP1 is closely related to immunity. MASP1 has the potential to positively regulate the abundance of immune cells. The MASP1-related prognosis signature and nomogram can accurately predict the survival of patients with STAD. Therefore, MASP1 is likely to be a diagnosis and promising immunotherapy target spot in STAD clinical practice.


Subject(s)
Adenocarcinoma , Mannose-Binding Protein-Associated Serine Proteases , Stomach Neoplasms , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Humans , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Prognosis , RNA, Messenger/genetics , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
20.
Front Immunol ; 13: 907023, 2022.
Article in English | MEDLINE | ID: mdl-36052069

ABSTRACT

The complement system plays an important role in host defense and is activated via three different activation pathways. We have previously reported that mannose-binding lectin-associated serine protease (MASP)-3, unlike its splicing variant MASP-1, circulates in an active form and is essential for the activation of the alternative pathway (AP) via the activation of complement factor D (FD). On the other hand, like MASP-1 and MASP-2 of the lectin pathway (LP), MASP-3 forms a complex with the pattern recognition molecules (PRMs) of the LP (LP-PRMs). Both MASP-1 and MASP-2 can be activated efficiently when the LP-PRMs complexed with them bind to their ligands. On the other hand, it remains unclear how MASP-3 is activated, or whether complex formation of MASP-3 with LP-PRMs is involved in activation of MASP-3 or its efficiency in the circulation. To address these issues, we generated wild-type (WT) and four mutant recombinant mouse MASP-3 proteins fused with PA (human podoplanin dodecapeptide)-tag (rmMASP-3-PAs), the latter of which have single amino acid substitution for alanine in the CUB1 or CUB2 domain responsible for binding to LP-PRMs. The mutant rmMASP-3-PAs showed significantly reduced in-vivo complex formation with LP-PRMs when compared with WT rmMASP-3-PA. In the in-vivo kinetic analysis of MASP-3 activation, both WT and mutant rmMASP-3-PAs were cleaved into the active forms as early as 30 minutes in the circulation of mice, and no significant difference in the efficiency of MASP-3 cleavage was observed throughout an observation period of 48 hours after intravenous administration. All sera collected 3 hours after administration of each rmMASP-3-PA showed full restoration of the active FD and AP activity in MASP-3-deficient mouse sera at the same levels as WT mouse sera. Unexpectedly, all mutant rmMASP-3-PAs showed faster clearance from the circulation than the WT rmMASP-3-PA. To our knowledge, the current study is the first to show in-vivo kinetics of MASP-3 demonstrating rapid activation and clearance in the circulation. In conclusion, our results demonstrated that the complex formation of MASP-3 with LP-PRMs is not required for in-vivo activation of MASP-3 or its efficiency, but may contribute to the long-term retention of MASP-3 in the circulation.


Subject(s)
Complement Pathway, Mannose-Binding Lectin , Mannose-Binding Protein-Associated Serine Proteases , Animals , Complement Pathway, Mannose-Binding Lectin/physiology , Complement System Proteins , Humans , Kinetics , Lectins/genetics , Lectins/metabolism , Mannose-Binding Protein-Associated Serine Proteases/genetics , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Mice , Mutation , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...